Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 12(1): 14545, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-2016826

ABSTRACT

There is an urgent need for evidence-based engineering controls to reduce transmission of SARS-CoV-2, which causes COVID-19. Although ultraviolet (UV) light is known to inactivate coronaviruses, conventional UV lamps contain toxic mercury and emit wavelengths (254 nm) that are more hazardous to humans than krypton chlorine excimer lamps emitting 222 nm (UV222). Here we used culture and molecular assays to provide the first dose response for SARS-CoV-2 solution exposed to UV222. Culture assays (plaque infectivity to Vero host) demonstrated more than 99.99% disinfection of SARS-CoV-2 after a UV222 dose of 8 mJ/cm2 (pseudo-first order rate constant = 0.64 cm2/mJ). Immediately after UV222 treatment, RT-qPCR assays targeting the nucleocapsid (N) gene demonstrated ~ 10% contribution of N gene damage to disinfection kinetics, and an ELISA assay targeting the N protein demonstrated no contribution of N protein damage to disinfection kinetics. Molecular results suggest other gene and protein damage contributed more to disinfection. After 3 days incubation with host cells, RT-qPCR and ELISA kinetics of UV222 treated SARS-CoV-2 were similar to culture kinetics, suggesting validity of using molecular assays to measure UV disinfection without culture. These data provide quantitative disinfection kinetics which can inform implementation of UV222 for preventing transmission of COVID-19.


Subject(s)
COVID-19 , Disinfection , COVID-19/prevention & control , Chlorine , Disinfection/methods , Humans , SARS-CoV-2 , Ultraviolet Rays
2.
ACS ES&T water ; 2022.
Article in English | EuropePMC | ID: covidwho-1887985

ABSTRACT

We evaluated the performance of reverse transcription quantitative PCR (uniplex and duplex RT-qPCR) and chip-based digital PCR (duplex RT-dPCR) using CDC N1 and CDC N2 assays for longitudinal monitoring of SARS-CoV-2 RNA in influent wastewater samples (n = 281) from three wastewater plants in Ohio from January 2021 to January 2022. Human fecal virus (PMMoV) and wastewater flow rate were used to normalize SARS-CoV-2 concentrations. SARS-CoV-2 measurements and COVID-19 cases were strongly correlated, but normalization effects on correlations varied between sewersheds. SARS-CoV-2 measurements by RT-qPCR were strongly correlated with 7-day moving average COVID-19 cases (average Spearman’s ρ = 0.58, p < 0.05). SARS-CoV-2 was detected more frequently in samples with duplex RT-dPCR than with duplex RT-qPCR during periods of low COVID-19 cases. Duplex and uniplex RT-qPCR N1 concentrations were more strongly correlated with cases (ρ = 0.62) than N2 (ρ = 0.52). RT-dPCR correlations (average ρ = 0.21) were weaker than those of RT-qPCR (average ρ = 0.58). We also share practical experience from establishing wastewater surveillance. Per sample, RT-qPCR had a lower cost ($6 vs $18) and sample turnaround time (3–4 h vs 7–9 h) than RT-dPCR. These findings reinforce selection and use of PCR-based wastewater surveillance tools. SARS-CoV-2 RNA concentrations in wastewater measured by RT-qPCR and chip based RT-dPCR can be used for community-level tracking of COVID-19.

3.
Environ Res ; 212(Pt E): 113580, 2022 09.
Article in English | MEDLINE | ID: covidwho-1878146

ABSTRACT

Wastewater-based epidemiology is an effective tool for monitoring infectious disease spread or illicit drug use within communities. At the Ohio State University, we conducted a SARS-CoV-2 wastewater surveillance program in the 2020-2021 academic year and compared results with the university-required weekly COVID-19 saliva testing to monitor COVID-19 infection prevalence in the on-campus residential communities. The objectives of the study were to rapidly track trends in the wastewater SARS-CoV-2 gene concentrations, analyze the relationship between case numbers and wastewater signals when adjusted using human fecal viral indicator concentrations (PMMoV, crAssphage) in wastewater, and investigate the relationship of the SARS-CoV-2 gene concentrations with wastewater parameters. SARS-CoV-2 nucleocapsid and envelope (N1, N2, and E) gene concentrations, determined with reverse transcription droplet digital PCR, were used to track SARS-CoV-2 viral loads in dormitory wastewater once a week at 6 sampling sites across the campus during the fall semester in 2020. During the following spring semester, research was focused on SARS-CoV2 N2 gene concentrations at 5 sites sampled twice a week. Spearman correlations both with and without adjusting using human fecal viral indicators showed a significant correlation (p < 0.05) between human COVID-19 positive case counts and wastewater SARS-CoV-2 gene concentrations. Spearman correlations showed significant relationships between N1 gene concentrations and both TSS and turbidity, and between E gene concentrations and both pH and turbidity. These results suggest that wastewater signal increases with the census of infected individuals, in which the majority are asymptomatic, with a statistically significant (p-value <0.05) temporal correlation. The study design can be utilized as a platform for rapid trend tracking of SARS-CoV-2 variants and other diseases circulating in various communities.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Universities , Wastewater , Wastewater-Based Epidemiological Monitoring
4.
Indoor Air ; 32(1): e12969, 2022 01.
Article in English | MEDLINE | ID: covidwho-1570729

ABSTRACT

Resuspension of dust from flooring is a major source of human exposure to microbial contaminants, but the persistence of viruses on dust and carpet and the contribution to human exposure are often unknown. The goal of this work is to determine viability of MS2 and Phi6 bacteriophages on cut carpet, looped carpet, and house dust both over time and after cleaning. Bacteriophages were nebulized onto carpet or dust in artificial saliva. Viability was measured at 0, 1, 2, 3, 4, 24, and 48 h and after cleaning by vacuum, steam, hot water extraction, and disinfection. MS2 bacteriophages showed slower viability decay rates in dust (-0.11 hr-1 ), cut carpet (-0.20 hr-1 ), and looped carpet (-0.09 hr-1 ) compared to Phi6 (-3.36 hr-1 , -1.57 hr-1 , and -0.20 hr-1 , respectively). Viable viral concentrations were reduced to below the detection limit for steam and disinfection for both MS2 and Phi6 (p < 0.05), while vacuuming and hot water extraction showed no significant changes in concentration from uncleaned carpet (p > 0.05). These results demonstrate that MS2 and Phi6 bacteriophages can remain viable in carpet and dust for several hours to days, and cleaning with heat and disinfectants may be more effective than standard vacuuming.


Subject(s)
Air Pollution, Indoor , Bacteriophages , Allergens , Dust , Floors and Floorcoverings , Humans
5.
mSystems ; 6(2)2021 Apr 13.
Article in English | MEDLINE | ID: covidwho-1394062

ABSTRACT

Ongoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in bulk floor dust and related samples as a proof of concept of a noninvasive environmental surveillance methodology for coronavirus disease 2019 (COVID-19) and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from the rooms of individuals positive for COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription-PCR (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had a geometric mean concentration of 163 copies/mg of dust and ranged from nondetects to 23,049 copies/mg of dust detected using droplet digital PCR (ddPCR). An average of 89% of bulk dust samples were positive for the virus by the detection methods compared to 55% of surface swabs and fewer on the passive sampler (19% carpet, 29% polystyrene). In bulk dust, SARS-CoV-2 was detected in 76%, 93%, and 97% of samples measured by qPCR, chip-based dPCR, and droplet dPCR, respectively. Detectable viral RNA in the bulk vacuum bags did not measurably decay over 4 weeks, despite the application of a disinfectant before room cleaning. Future monitoring efforts should further evaluate RNA persistence and heterogeneity in dust. This study did not measure virus infectivity in dust or potential transmission associated with dust. Overall, this work demonstrates that bulk floor dust is a potentially useful matrix for long-term monitoring of viral disease in high-risk populations and buildings.IMPORTANCE Environmental surveillance to assess pathogen presence within a community is proving to be a critical tool to protect public health, and it is especially relevant during the ongoing COVID-19 pandemic. Importantly, environmental surveillance tools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease.

SELECTION OF CITATIONS
SEARCH DETAIL